Topographic and Chemical Analysis of Reciprocating and Rotary Instruments Surface after Continuous Use

Author:

Bastos Mariana Mena Barreto1,Hanan Aida Rene Assayag1,Bastos Ana Mena Barreto2,Marques André Augusto Franco3,Garcia Lucas da Fonseca Roberti4,Sponchiado Júnior Emílio Carlos1

Affiliation:

1. Universidade Federal do Amazonas, Brazil

2. Instituto Federal do Amazonas, Brazil

3. Universidade do Estado do Amazonas, Brazil

4. Universidade Federal de Santa Catarina, Brazil

Abstract

Abstract This study aimed at evaluating the changes in surface characteristics and NiTi content of reciprocating and rotary instruments after continuous use. Thirty brand-new instruments were assigned to 3 groups (n=10): PNX1 Group - ProTaper Next system - instrument X1; PNX2 Group - ProTaper Next system - instrument X2 and WO Group - WaveOne system - Primary instrument 25.08. The instruments were used to prepare 60 simulated root canals. Analysis of surface characteristics by scanning electron microscopy (SEM) and chemical analysis of Ni and Ti content by energy-dispersive spectroscopy (EDS) were performed before and after the first and third use of the instruments. Only WO Group had significant increase in the quantity of defects and deformations after the third use (p<0.05). PNX1 Group had significant decrease in Ni content after the third use, in comparison with the unused instruments (p<0.05). PNX1 Group had no decrease in Ti content throughout the time of use (p>0.05), however, in PNX2 Group, there was significant decrease in the different time interval of analysis (p<0.05). Continuous use promoted increase in defects and deformations only for WaveOne instruments. Chemical composition presented significant changes according to the time of instruments use.

Publisher

FapUNIFESP (SciELO)

Subject

General Dentistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3