Microbial respiration and chemical composition of different sediment fractions in waterbodies of the upper Paraná River floodplain, Brazil

Author:

THOMAZ S. M.1,PEREIRA G.1,PAGIORO T. A.1

Affiliation:

1. Universidade de Maringá, Brazil

Abstract

Four size fractions of the sediment of six environments of the upper Paraná River floodplain were analyzed for carbon, nitrogen, and phosphorus contents and microbial respiration (oxygen consumption). Particle size did not affect nitrogen and phosphorus content or microbial activity, but did affect carbon content (F = 4.274, df = 3; 20, p = 0.020). The carbon concentration of ultra-fine particles was significantly lower than that of other sizes of sediment particles. Microbial respiration values were well predicted by sediment chemical composition, as shown by multiple regression (microbial respiration = -0.39 - 0.210C + 0.108N + 0.796P; F = 7.0495, p = 0.0022). However, phosphorus was the element which best explained the microbial respiration (partial coefficient = 0.796, p = 0.0039, n = 23). Considering that i) phosphorus was the best predictor of microbial respiration; ii) phosphorus is trapped in the series of reservoirs located upstream from the section of the floodplain studied; and iii) microbial respiration is a measure of decomposition rates and nutrient cycling, we hypothesize that the long-term accumulation of litter detritus and reduction of nutrient cycling in environments of the upper Paraná River floodplain are probable impacts of this decrease in phosphorus caused by the upstream reservoirs.

Publisher

FapUNIFESP (SciELO)

Subject

General Medicine

Reference40 articles.

1. Wetlands Biodiversity;AGOSTINHO A. A.,1999

2. Limnology in Brazil;AGOSTINHO A. A.,1995

3. A planície alagável do Rio Paraná: importância e preservação;AGOSTINHO A. A.,1996

4. Ecology: individuals, populations and communities;BEGON M.,1996

5. Carbon conversion efficiency for bacterial grouth on lignocellulose: Implications for detritus based food webs;BENNER R.;Limnol. Oceanogr.,1988

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3