Affiliation:
1. Universidade Federal de Sergipe (UFS), Brazil
Abstract
Abstract The presence of spoilage microorganisms in forage interferes with the fermentation process of silage, due to competition with lactic acid bacteria for substrate, generating losses and influencing the nutritional value of the ensiled material. Thus, the objective is to evaluate the effect of “Alecrim Pimenta” essential oil (Lippia sidoides) and nanoformulated thymol on microbiological, fermentative and aerobic stability profile of sorghum (Sorghum bicolor cv. BRS Ponta Negra) silage intercropped with Paiaguás grass (Urochloa brizantha cv. BRS Paiaguás). A 4 x 3 factorial design was adopted, with four additives applied to the silages (control treatment; nanoformulated "Alecrim Pimenta" essential oil (OEN); 62% nanoformulated thymol; and 100% pure nanoformulated thymol), associated with three silo period times (15, 30 and 45 days), with five replications per treatment, totaling 60 mini silos. The Clostridium population was higher in the control treatment and in the OEN. The Lactobacillus population decreased with the increase in silo opening time. Higher aerobic stabilities were recorded in silages with 100% nanoformulated thymol with opening at 15 days; and silages with 62% nanoformulated Thymol (opening period at 30 and 45 days). Silages with 100% thymol provided higher losses of dry matter, gases and effluents, while the use of OEN provided lower losses of dry matter and gases. Silos opened at 45 days showed higher losses of dry matter, gases and effluents. Sorghum and Paiaguás grass silages that received nanoformulated thymol were more efficient in controlling Clostridium and Lactobacillus populations, and this additive improved the aerobic stability of the silage.
Subject
General Veterinary,Animal Science and Zoology