The alteration of neuronal activities of the cuneiform nucleus in non-hypovolemic and hypovolemic hypotensive conditions

Author:

Mohebbati Reza1ORCID,Abbassian Hassan2ORCID,Shafei Mohammad Naser1ORCID,Gorji Ali3ORCID,Negah Sajad Sahab4ORCID

Affiliation:

1. Mashhad University of Medical Sciences, Iran

2. Mashhad University of Medical Sciences, Iran; Mashhad University of Medical Sciences, Iran

3. Mashhad University of Medical Sciences, Iran; Shefa Neuroscience Research Center, Iran; Westfälische Wilhelms-Universität Münster, Germany

4. Mashhad University of Medical Sciences, Iran; Shefa Neuroscience Research Center, Iran

Abstract

Abstract Background: The cuneiform nucleus is located in the center of the circuit that mediates autonomic responses to stress. Hemorrhagic hypotension leads to chemoreceptor anoxia, which consequently results in the reduction of baroreceptor discharge and stimulation of the chemoreceptor. Objective: Using the single-unit recording technique, the neuronal activities of the cuneiform nucleus were investigated in hypotensive states induced by hemorrhage and administration of an anti-hypertensive drug (hydralazine). Methods: Thirty male rats were divided into the control, hemorrhage, and hydralazine groups. The femoral artery was cannulated for the recording of cardiovascular responses, including systolic blood pressure, mean arterial pressure, and heart rate. Hydralazine was administered via tail vein. The single-unit recording was performed from the cuneiform nucleus. Results: The maximal systolic blood pressure and the mean arterial pressure significantly decreased and heart rate significantly increased after the application of hydralazine as well as the following hemorrhage compared to the control group. Hypotension significantly increased the firing rate of the cuneiform nucleus in both the hemorrhage and hydralazine groups compared to the control group. Conclusions: The present data indicate that the cuneiform nucleus activities following hypotension may play a crucial role in blood vessels and vasomotor tone.

Publisher

FapUNIFESP (SciELO)

Subject

Neurology,Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3