Bayesian binary regression model: an application to in-hospital death after AMI prediction

Author:

Souza Aparecida D. P.1,Migon Helio S.2

Affiliation:

1. Universidade Estadual Paulista

2. Universidade Federal do Rio de Janeiro

Abstract

A Bayesian binary regression model is developed to predict death of patients after acute myocardial infarction (AMI). Markov Chain Monte Carlo (MCMC) methods are used to make inference and to evaluate Bayesian binary regression models. A model building strategy based on Bayes factor is proposed and aspects of model validation are extensively discussed in the paper, including the posterior distribution for the c-index and the analysis of residuals. Risk assessment, based on variables easily available within minutes of the patients' arrival at the hospital, is very important to decide the course of the treatment. The identified model reveals itself strongly reliable and accurate, with a rate of correct classification of 88% and a concordance index of 83%.

Publisher

FapUNIFESP (SciELO)

Subject

Management Science and Operations Research

Reference21 articles.

1. Bayesian Analysis of Binary and Polychotomous Response Data;Albert J.H.;Journal of the American Statistical Association,1993

2. Bayesian Residual Analysis for Binary Response Regression Models;Albert J.H.;Biometrika,1995

3. Hospital mortality in Acute Myocardial Infarctions: Is it possible to Predict Using Admission Data?;Bassan R.;Arq. Bras. Cardiol,1996

4. A New Perspective on Priors for Generalized Linear Models;Bedrick E.J;Journal of the American Statistical Association,1997

5. Modelling Binary Data;Collet D.,1994

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3