Affiliation:
1. University of Warmia and Mazury, Poland
Abstract
So far, three methods have been developed to determine GNSS antenna phase center variations (PCV). For this reason, and because of some problems in introducing absolute models, there are presently three models of PCV receiver antennas (relative, absolute converted and absolute) and two satellite antennas (standard and absolute). Additionally, when simultaneously processing observations from different positioning systems (e.g. GPS and GLONASS), we can expect a further complication resulting from the different structure of signals and differences in satellite constellations. This paper aims at studying the height differences in short static GPS/GLONASS observation processing when different calibration models are used. The analysis was done using 3 days of GNSS data, collected with three different receivers and antennas, divided by half hour observation sessions. The results show that switching between relative and absolute PCV models may have a visible effect on height determination, particularly in high accuracy applications. The problem is especially important when mixed GPS/GLONASS observations are processed. The update of receiver antenna calibrations model from relative to absolute in our study (using LEIAT504GG, JAV_GRANT-G3T and TPSHIPER_PLUS antennas) induces a jump (depending on the measurement session) in the vertical component within to 1.3 cm (GPS-only solutions) or within 1.9 cm (GPS/GLONASS solutions).
Subject
General Earth and Planetary Sciences
Reference40 articles.
1. Comparing GPS-only with GPS+GLONASS positioning in a regional permanent GNSS network;BRUNINX C.;GPS Solutions,2007
2. GPS antenna mixing and phase center corrections;BRAUN J.;AGU, Fall Meeting Supplement,1993
3. Bernese GPS Software Version 5.0;DACH R.,2007
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献