LEAST SQUARES FITTING OF ELLIPSOID USING ORTHOGONAL DISTANCES

Author:

BEKTAS SEBAHATTIN1

Affiliation:

1. OndokuzMayis University, Turkey

Abstract

In this paper, we present techniques for ellipsoid fitting which are based on minimizing the sum of the squares of the geometric distances between the data and the ellipsoid. The literature often uses "orthogonal fitting" in place of "geometric fitting" or "best-fit". For many different purposes, the best-fit ellipsoid fitting to a set of points is required. The problem offitting ellipsoid is encounteredfrequently intheimage processing, face recognition, computer games, geodesy etc. Today, increasing GPS and satellite measurementsprecisionwill allow usto determine amore realistic Earth ellipsoid. Several studies have shown that the Earth, other planets, natural satellites, asteroids and comets can be modeled as triaxial ellipsoids Burša and Šima (1980), Iz et all (2011). Determining the reference ellipsoid for the Earth is an important ellipsoid fitting application, because all geodetic calculations are performed on the reference ellipsoid. Algebraic fitting methods solve the linear least squares (LS) problem, and are relatively straightforward and fast. Fitting orthogonal ellipsoid is a difficult issue. Usually, it is impossible to reach a solution with classic LS algorithms. Because they are often faced with the problem of convergence. Therefore, it is necessary to use special algorithms e.g. nonlinear least square algorithms. We propose to use geometric fitting as opposed to algebraic fitting. This is computationally more intensive, but it provides scope for placing visually apparent constraints on ellipsoid parameter estimation and is free from curvature bias Ray and Srivastava (2008).

Publisher

FapUNIFESP (SciELO)

Subject

General Earth and Planetary Sciences

Reference13 articles.

1. The comparison of L1 and L2-norm minimization methods;Bektas S;International Journal of the Physical Sciences,2010

2. Orthogonal Distance From An Ellipsoid;Bektas S;Boletim de Ciencias Geodesicas,2014

3. Fitting conic sections to scattered data;Bookstein F. L;Computer Graphics and Image Processing,1979

4. Tri-axiality of the Earth, the Moon and Mars;Burša M;Stud. Geoph. et Geod,1980

5. Geometric Tools;Eberly D,2008

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3