Assessing reduction of cluster size to estimate wood volume in an Amazonian forest

Author:

RODRIGUES Nivea Maria Mafra1ORCID,DAVID Hassan Camil2,FERREIRA Gabriel William Dias3,ARAÚJO Emanuel José Gomes4,MORAIS Vinícius Augusto5

Affiliation:

1. Universidade Federal do Espírito Santo - UFES, Brazil

2. Universidade Federal Rural da Amazônia - UFRA, Brazil

3. Universidade Federal de Lavras - UFLA, Brazil

4. Universidade Federal Rural do Rio de Janeiro - UFRRJ, Brazil

5. Universidade do Estado de Mato Grosso - UNEMAT, Brazil

Abstract

ABSTRACT While the Brazilian National Forest Inventory (NFI) is in progress, there is a growing demand to understand the effect of cluster size on the accuracy and precision of forest-attribute estimation. We aimed to find the minimum cluster size (in area) to estimate merchantable volume (MV) with the same accuracy and precision as the estimates derived from the original cluster of 8,000 m2. We used data from an inventory carried out in a forest unit (Bom Futuro National Forest) in the southwestern Brazilian Amazon, where 22 clusters were distributed as a two-stage sampling design. Three products were evaluated: (i) MV of trees with a diameter at breast height (DBH) ≥ 20 cm (P1); (ii) MV of trees with DBH ≥ 50 cm (P2); and (iii) MV of commercial species with DBH ≥ 50 cm and stem quality ‘level 1’ or ‘level 2’ (P3). We assessed ten scenarios in which the cluster size was reduced from 8,000 m2 to 800 m2. The accuracy of P1, P2 and P3 was highly significantly lower for reductions < 2,400 m². The precision was more sensitive to variations in cluster size, especially for P2 and P3. Minimum cluster sizes were ≥ 2,400 m² to estimate P1, ≥ 4,800 m² to estimate P2, and ≥ 7,200 m² to estimate P3. We concluded that it is possible to reduce the cluster size without losing the accuracy and precision given by the original NFI cluster. A cluster of 2,400 m² provides estimates as accurate as the original cluster, regardless of the evaluated product.

Publisher

FapUNIFESP (SciELO)

Subject

General Agricultural and Biological Sciences

Reference27 articles.

1. Köppen’s climate classification map for Brazil;Alvares C.A.;Meteorologische Zeitschrift,2013

2. Inventário florestal de grandes áreas na Floresta Nacional do Tapajós, Pará, Amazônia, Brasil;Andrade D.F.;Biota Amazônia,2015

3. Avaliação do tamanho de parcelas e de intensidade de amostragem em inventários florestais;Augustynczik A.L.D.;Scientia Forestalis,2013

4. Tamanho de unidade de amostra e intensidade amostral para espécies comerciais da Amazônia;Cavalcanti F. J. B.;Floresta,2009

5. Comparação dos valores estimados por amostragem na caracterização da estrutura de uma área de floresta na Amazônia com as informações registradas no censo florestal;Cavalcanti F.J.B;Revista Árvore,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cluster sampling MUSA methodology for user satisfaction analysis of an educational distance-learning platform;Eurasia Journal of Mathematics, Science and Technology Education;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3