Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation

Author:

Benjamin Sailas1,Pandey Ashok1

Affiliation:

1. Council of Scientific & Industrial Research, India

Abstract

Three distinct forms (Lip A, Lip B and Lip C) of extra-cellular lipases (EC- 3.1.1.3), produced by Candida rugosa in solid state fermentation (SSF) were purified and characterised. SSF was carried out in glass columns using coconut oil cake and wheat bran. The enzyme was purified from the aqueous extract of fermented matter by ammonium sulphate precipitation, dialysis, ultra-filtration and gel filtration using Sephadex-200 to a 43-fold purification and 64.35-mg/ml specific activity. SDS-PAGE of purified enzyme revealed three distinct bands, indicating the existence of three iso-forms, Lip A, Lip B and Lip C with apparent molecular weight about 64,000, 62,000 and 60,000 Da, respectively. All the three iso-forms were optimally active at 35-40°C and pH 7-8. They showed marked differences in their Km values with different saturated and unsaturated triacyl glycerols. Ag++ and Hg++ strongly inhibited enzyme activity of all the iso-forms, Mn++ has no effect and Ca++ and Mg++ enhanced the activity. EDTA also strongly inhibited the enzyme activities of iso-forms. However, activities of all the three lipases were completely inhibited by serine protease inhibitors such as 3,4-dichloroisocoumarin, pefabloc and partially by phenylmethanesulphonyl fluoride. To the best of our knowledge, this is the first report describing the purification and characterisation of C. rugosa lipase iso-forms from solid cultures. These lipase iso-forms with diverse characteristics produced in solid cultures may find potential application in biomedical field.

Publisher

FapUNIFESP (SciELO)

Subject

Multidisciplinary

Reference27 articles.

1. Tetrahedr;Akita H.;Asymm.,1995

2. Candida rugosa and its lipases: A retrospect;Benjamin S.;J. Sci. Ind. Res.,1996

3. Optimi-zation of liquid media for lipase production by Candida rugosa,;Benjamin S.;Biores. Technol.,1996

4. Enhance-ment of lipase production during repeated batch cultivation using immobilised Candida rugosa;Benjamin S.;Process Biochem.,1997

5. Coconut cake: a potent substrate for the production of lipase by Candida rugosa in solid state fermentation;Benjamin S.;Acta Biotechnol.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3