Mutagenesis in Petunia x hybrida Vilm. and isolation of a novel morphological mutant

Author:

Berenschot Amanda S.1,Zucchi Maria I.1,Tulmann-Neto Augusto2,Quecini Vera3

Affiliation:

1. Instituto Agronômico, Brasil

2. USP, Brasil

3. EMBRAPA, Brasil

Abstract

Traditionally, mutagenesis has been used to introduce novel genetic variability in ornamental crops. More recently, it has become a powerful tool in gene discovery and functional analyses in reverse genetics approaches. The present work aimed to compare the efficiency of physical and chemical agents in generating mutant populations of petunia. We have indirectly evaluated the genomic damage by analyzing developmental characteristics of the plantlets derived from treated seeds employing gamma radiation at 0, 20, 40, 60, 80 and 100 Gy and the alkylating agent ethyl-methanesulfonate (EMS) at 0, 0.05, 0.1, 0.15, 0.2 and 0.25% (v/v). Gamma rays and EMS caused developmental defects and decreased seedling viability in plants obtained from the mutagenized seeds. High mutagen doses reduced in approximately 44% the number of plants with primary leaves at 15 days after sowing (DAS) and decreased seedling survival rates to 55% (gamma) and 28% (EMS), in comparison to untreated controls. Seedling height decrease was proportional to increasing EMS dosage, whereas 40 and 60 Gy of gamma irradiation caused the most significant reduction in height. Moderate DNA damage allowing a high saturation of mutant alleles in the genome and the generation of viable plants for reverse genetics studies was correlated to the biological parameter LD50, the dose required to kill half of the tested population. It corresponded to 100 Gy for gamma radiation and 0.1% for EMS treatment. The optimized mutagen treatments were used to develop petunia mutant populations (M1 and M2) and novel morphological mutants were identified.

Publisher

FapUNIFESP (SciELO)

Subject

Plant Science,Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3