Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments

Author:

El-Sharkawy Mabrouk A.1

Affiliation:

1. Centro Internacional de Agricultura Tropical, Colombia

Abstract

The paper summarizes research conducted at International Center for Tropical Agriculture (CIAT) on responses of cassava to extended water shortages in the field aided by modern gas-exchange and water-relation techniques as well as biochemical assays. The aim of the research was to coordinate basic and applied aspects of crop physiology into a breeding strategy with a multidisciplinary approach. Several physiological characteristics/traits and mechanisms underpinning tolerance of cassava to drought were elucidated using a large number of genotypes from the CIAT core germplasm collection grown in various locations representing ecozones where cassava is cultivated. Most notable among these characteristics are the high photosynthetic capacity of cassava leaves in favorable environments and the maintenance of reasonable rates throughout prolonged water deficits, a crucial characteristic for high and sustainable productivity. Cassava possess a tight stomatal control over leaf gas exchange that reduces water losses when plants are subjected to soil water deficits as well as to high atmospheric evaporative demands, thus protecting leaves from severe dehydration. During prolonged water deficits, cassava reduces its canopy by shedding older leaves and forming smaller new leaves leading to less light interception, another adaptive trait to drought. Though root yield is reduced (but much less than the reduction in top growth) under water stress, the crop can recover when water becomes available by rapidly forming new canopy leaves with much higher photosynthetic rates compared to unstressed crops, thus compensating for yield losses with final yields approaching those in well-watered crops. Cassava can extract slowly water from deep soils, a characteristic of paramount importance in seasonally dry and semiarid environments where deeply stored water needs to be tapped. Screening large accessions under seasonally dry and semiarid environments showed that yield is significantly correlated with upper canopy leaf photosynthetic rates, and the association was attributed mainly to nonstomatal (anatomical/biochemical) factors. Parental materials with both high yields and photosynthetic rates were identified for incorporation into breeding and selection programs for cultivars adapted to prolonged drought coupled with high temperatures and dry air, conditions that might be further aggravated by global climate changes in tropical regions.

Publisher

FapUNIFESP (SciELO)

Subject

Plant Science,Agronomy and Crop Science

Reference112 articles.

1. Ultraestructura foliar y fotosíntesis de yuca en diferentes cultivares (Manihot esculenta Crantz);Aguilar LP,1995

2. Cassava: Biology, Production and Utilization;Allem AC,2002

3. Cassava: Biology, Production and Utilization;Alves AAC,2002

4. Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress;Augé RM;Pant Soil,1987

5. Plant photosynthetic production as controlled by leaf growth, phenology, and behavior;Begonia GB;Photosynthetica,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3