Many-particle Sudarshan-Lindblad equation: mean-field approximation, nonlinearity and dissipation in a spin system

Author:

Prataviera G.A.1,Mizrahi S.S.2

Affiliation:

1. Universidade de São Paulo, Brazil

2. Universidade Federal de São Carlos

Abstract

A system of N spin-1/2 particles interacting with a thermal reservoir is used as a pedagogical example for advanced undergraduate and graduate students. We introduce and illustrate some methods, approximations, and phenomena related to dissipation and nonlinearity in many-particle physics. We start our analysis from the dynamical Sudarshan-Lindblad quantum master equation for the density operator of a system S interacting with a thermal reservoir R. We derive the quantum version of the so-called Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) equations such that the master equation can be decomposed in a hierarchical set of N - 1 equations (N > 1). The hierarchy is broken by introducing the mean-field approximation and reducing the problem to a nonlinear single particle system. In this scenario, the Hamiltonian is nonlinear (i.e., it depends on the state of <S), although the superoperator responsible for the dissipation and decoherence of S remains unaffected. To provide a useful tool to students: (1) we discuss the physical approximations involved, (2) we derive the analytical solution to the mean values equations of motion resulting from the Hamiltonian, (3) we solve analytically the master equation in the stationary regime, (4) we obtain and discuss the solution of the nonlinear master equation, numerically, and finally, (5) we discuss the master equation beyond the mean-field approximation and show how to introduce higher order quantum correlations that have been previously neglected.

Publisher

FapUNIFESP (SciELO)

Subject

General Physics and Astronomy,Education

Reference68 articles.

1. Das D�mpfungsproblem in der Wellenmechanik

2. in Probleme der Modernen Physik, Arnold Sommerfeld zum 60: Geburtstag;Pauli W.,1928

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3