Subgingival microbiota and immune response modulation of osseointegrable implants

Author:

SILVA Nicole Serqueira da1ORCID,ALMEIDA Ana Carolina Rosa de1ORCID,NASCIMENTO Marvin do2ORCID,SOUZA Bruno Martins de2ORCID,LOURENÇO Talita Gomes Baeta1ORCID,POSCH Aline Tany1ORCID

Affiliation:

1. Universidade Federal do Rio de Janeiro, Brasil

2. Instituto Militar de Engenharia, Brasil

Abstract

ABSTRACT Osseointegrable dental implants are biomaterials made of titanium or other alloys mixed with titanium, which have high biocompatibility and allow osseointegration. However, this process can be modulated by changes in the complex mechanisms between microbiota, immune response and host. The present study aims to present how the immune system-microbiota-host interaction influences the osseointegration process of titanium dental implants and its alloys. A literature review was performed through electronic and manual searches in several databases, including PubMed, LILACS, Google Scholar, SciELO and Web of Science for articles published in the last 20 years in English and Portuguese. The formation of a temporary fibrin matrix on the implants surface after implantation implies the recruitment, adhesion and activity of immune cells at this site, with the release of pro-inflammatory molecules and recruitment of neutrophils. In the second moment, monocytes and macrophages (M1) are recruited, producing, in this step, reactive oxygen species. In the later stage of inflammation, macrophages (M2) help in tissue regeneration with expression of anti-inflammatory cytokines. In addition, the implants surface provides a site for microbial colonization mediated by salivary pellicle and topographical features. Thus, in symbiosis the modulation of the immune response will be favorable to osseointegration. However, the dysbiotic process exacerbates the inflammatory progression modulating the immune response influencing abnormal tissue healing or scar and fibrosis formation, compromising osseointegration. Different conditions of the subgingival microbiota will influence different immunological cascades, generating different cellular responses and positive or negative modulation of the osseointegration process.

Publisher

FapUNIFESP (SciELO)

Subject

General Dentistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3