Automatic classification of journalistic documents on the Internet1

Author:

OLIVEIRA Elias1,BRANQUINHO FILHO Delermando2

Affiliation:

1. Universidade Federal do Espírito Santo, Brazil

2. Faculdade Católica Salesiana do Espírito Santo, Brazil

Abstract

Abstract Online journalism is increasing every day. There are many news agencies, newspapers, and magazines using digital publication in the global network. Documents published online are available to users, who use search engines to find them. In order to deliver documents that are relevant to the search, they must be indexed and classified. Due to the vast number of documents published online every day, a lot of research has been carried out to find ways to facilitate automatic document classification. The objective of the present study is to describe an experimental approach for the automatic classification of journalistic documents published on the Internet using the Vector Space Model for document representation. The model was tested based on a real journalism database, using algorithms that have been widely reported in the literature. This article also describes the metrics used to assess the performance of these algorithms and their required configurations. The results obtained show the efficiency of the method used and justify further research to find ways to facilitate the automatic classification of documents.

Publisher

FapUNIFESP (SciELO)

Subject

Library and Information Sciences,Museology,Information Systems

Reference41 articles.

1. Mining text data;AGGARWAL C. C.,2012

2. Representação do conhecimento na perspectiva da ciência da informação em tempo e espaço digitais 10.5007/1518-2924.2003;ALVARENGA L;Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação,2003

3. Web semântica: uma análise focada no uso de metadados;ALVES R. C. V,2005

4. Precisão no processo de busca e recuperação da informação: uso da mineração de textos;ARAÚJO JÚNIOR R. H.;Ciência da Informação,2006

5. Modern information retrieval: The concepts and technology behind search;BAEZA-YATES R.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Expert, Journal, and Automatic Classification of Full Texts and Annotations of Scientific Articles;Automatic Documentation and Mathematical Linguistics;2021-07

2. Экспертная, журнальная и автоматическая классификация полных текстов и аннотаций научных статей;Научно-техническая информация. Серия 2: Информационные процессы и системы;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3