Statistical evaluation of research performance of young university scholars: A case study

Author:

PRAUS Petr1ORCID

Affiliation:

1. VŠB – Technical University of Ostrava, Czech Republic

Abstract

Abstract The research performance of a small group of 49 young scholars, such as doctoral students, postdoctoral and junior researchers, working in different technical and scientific fields, was evaluated based on 11 types of research outputs. The scholars worked at a technical university in the fields of Civil Engineering, Ecology, Economics, Informatics, Materials Engineering, Mechanical Engineering, and Safety Engineering. Principal Component Analysis was used to statistically analyze the research outputs and its results were compared with factor and cluster analysis. The metrics of research productivity describing the types of research outputs included the number of papers, books and chapters published in books, the number of patents, utility models and function samples, and the number of research projects conducted. The metrics of citation impact included the number of citations and h-index. From these metrics – the variables – the principal component analysis extracted 4 main principal components. The 1st principal component characterized the cited publications in high-impact journals indexed by the Web of Science. The 2nd principal component represented the outputs of applied research and the 3rd and 4th principal components represented other kinds of publications. The results of the principal component analysis were compared with the hierarchical clustering using Ward’s method. The scatter plots of the principal component analysis and the Mahalanobis distances were calculated from the 4 main principal component scores, which allowed us to statistically evaluate the research performance of individual scholars. Using variance analysis, no influence of the field of research on the overall research performance was found. Unlike the statistical analysis of individual research metrics, the approach based on the principal component analysis can provide a complex view of the research systems.

Publisher

FapUNIFESP (SciELO)

Subject

Library and Information Sciences,Museology,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3