Immunoarchitectural characterization of a human skin model reconstructed in vitro

Author:

Souto Luís Ricardo Martinhão1,Vassallo José1,Rehder Jussara1,Pinto Glauce Aparecida1,Puzzi Maria Beatriz1

Affiliation:

1. Universidade Estadual de Campinas, Brazil

Abstract

CONTEXT AND OBJECTIVE: Over the last few years, different models for human skin equivalent reconstructed in vitro (HSERIV) have been reported for clinical usage and applications in research for the pharmaceutical industry. Before release for routine use as human skin replacements, HSERIV models need to be tested regarding their similarity with in vivo skin, using morphological (architectural) and immunohistochemical (functional) analyses. A model for HSERIV has been developed in our hospital, and our aim here was to further characterize its immunoarchitectural features by comparing them with human skin, before it can be tested for clinical use, e.g. for severe burns or wounds, whenever ancillary methods are not indicated. DESIGN AND SETTING: Experimental laboratory study, in the Skin Cell Culture Laboratory, School of Medical Sciences, Universidade Estadual de Campinas. METHODS: Histological sections were stained with hematoxylin-eosin, Masson's trichrome for collagen fibers, periodic acid-Schiff reagent for basement membrane and glycogen, Weigert-Van Gieson for elastic fibers and Fontana-Masson for melanocytes. Immunohistochemistry was used to localize cytokeratins (broad spectrum of molecular weight, AE1/AE3), high molecular weight cytokeratins (34βE12), low molecular weight cytokeratins (35βH11), cytokeratins 7 and 20, vimentin, S-100 protein (for melanocytic and dendritic cells), CD68 (KP1, histiocytes) and CD34 (QBend, endothelium). RESULTS: Histology revealed satisfactory similarity between HSERIV and in vivo skin. Immunohistochemical analysis on HSERIV demonstrated that the marker pattern was similar to what is generally present in human skin in vivo. CONCLUSION: HSERIV is morphologically and functionally compatible with human skin observed in vivo.

Publisher

FapUNIFESP (SciELO)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3