Selection intensities of families and clones in potato breeding

Author:

Benavente César Augusto Ticona1,Pinto César Augusto Brasil Pereira1

Affiliation:

1. Universidade Federal de Lavras, Brasil

Abstract

Families selection has not been recommended as a selection method for vegetative propagated species. To verify its utility for potato improvement a series of experiments were carried out under warm temperatures (rainy season). Thirty clonal families originated from heat tolerant parents were evaluated for tuber yield and specific gravity. After obtaining the seedling generation (SG) and the first clonal generation (FCG) individual clones from a further two generations were assessed. Simulations were conducted with different intensities of family selection in SG and FCG and intensities of clonal selection in subsequent generations. The results show that family selection intensities between 50% and 60% allowed the greatest gains. Estimates of h² at the families level were always higher than at the clones level and corroborate for the more effective selection of families in early generations. The selection of families for tuber specific gravity can be made in the early generations (SG and FCG) regardless of the temperature conditions where the individual clones will be selected. The sequential selection of families with intensities of 60% (SG) and 60% (FCG) would promote greater efficiency for the selection of clones in second or third clonal generation. In the case of applying stronger selection intensities for a higher efficiency with sequential selection (SG and FCG) weaker intensities should be applied in the SG and stronger intensity in FCG . Family selection for tuber yield could be practiced in the FCG as long as the selection of clones was not held in contrasting temperature conditions.

Publisher

FapUNIFESP (SciELO)

Subject

Soil Science,General Veterinary,Agronomy and Crop Science,Animal Science and Zoology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3