Rainfall erosivity for the State of Rio de Janeiro estimated by artificial neural network

Author:

Carvalho Daniel F. de1,Khoury Júnior Joseph K.2,Varella Carlos A. A.1,Giori Jacqueline Z.,Machado Roriz L.3

Affiliation:

1. UFRRJ

2. UFV

3. Instituto Federal de Educação, Ciência e Tecnologia Goiano

Abstract

The Artificial Neural Networks (ANNs) are mathematical models method capable of estimating non-linear response plans. The advantage of these models is to present different responses of the statistical models. Thus, the objective of this study was to develop and to test ANNs for estimating rainfall erosivity index (EI30) as a function of the geographical location for the state of Rio de Janeiro, Brazil and generating a thematic visualization map. The characteristics of latitude, longitude e altitude using ANNs were acceptable to estimating EI30 and allowing visualization of the space variability of EI30. Thus, ANN is a potential option for the estimate of climatic variables in substitution to the traditional methods of interpolation.

Publisher

FapUNIFESP (SciELO)

Subject

Agricultural and Biological Sciences (miscellaneous)

Reference19 articles.

1. Avaliação do desempenho de diferentes métodos de estimativa da evapotranspiração potencial no Estado de São Paulo;CAMARGO A.P.;Revista Brasileira de Agrometeorologia,1997

2. Distribuição, probabilidade de ocorrência e período de retorno dos índices de erosividade EI30 e KE>25 em Seropédica - RJ;CARVALHO D.F.;Engenharia Agrícola,2010

3. Padrões de precipitação e índices de erosividade para as chuvas de Seropédica e Nova Friburgo, RJ;CARVALHO D.F.;Revista Brasileira de Engenharia Agrícola e Ambiental,2005

4. Topgraphyand spatial variability of soil physical properties;CEDDIA M.B.;Scientia Agricola,2009

5. Erosividade das chuvas no Estado do Rio de Janeiro;GONÇALVES F.A.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3