Geostatistics and multivariate analysis to determine experimental blocks for sugarcane

Author:

Silva Gustavo Henrique da1ORCID,Pereira Kaléo Dias1ORCID,Carneiro Antonio Policarpo Souza1ORCID,Ferreira Matheus de Paula1ORCID,Santos Gérson Rodrigues dos1ORCID,Peternelli Luiz Alexandre1ORCID

Affiliation:

1. Universidade Federal de Viçosa, Brazil

Abstract

Abstract The objective of this work was to define experimental blocks for sugarcane experiments using geostatistical techniques, principal component analysis, and clustering techniques applied to soil properties. For this, data of soil chemical properties from a sugarcane experiment were used. Geostatistical techniques were applied to identify the spatial variability of these properties and to estimate the values for non-sampled locations through kriging. The principal components analysis was used for dimensional reduction, and, with the new variables obtained, the cluster analysis was performed using the k-means method to determine the experimental blocks with two to five replicates. Of the 12 analyzed variables, 10 showed spatial dependence. The principal component analysis allowed reducing the dimensionality of the data to two variables, which explained 82.27% of total variance. The obtained blocks presented irregular polygonal shapes, with different formats and sizes, and some of them showed discontinuities. The proposed methodology has the potential to identify more uniform areas in terms of soil chemical properties to allocate experimental blocks for sugarcane.

Publisher

FapUNIFESP (SciELO)

Reference34 articles.

1. ACOMPANHAMENTO DA SAFRA BRASILEIRA [DE] CANA-DE-AÇÚCAR: safra 2023/24: segundo levantamento,2023

2. Análise da correlação dos atributos físicos do solo com os componentes de rendimento de grãos de milho em diferentes sistemas de cultivo;ADÃO A. da S.;Research, Society and Development,2022

3. Geoestatística e análise fatorial exploratória para representação espacial de atributos químicos do solo, na cafeicultura;ALMEIDA L. da S.;Coffee Science,2016

4. Spatial dependence degree and sampling neighborhood influence on interpolation process for fertilizer prescription maps;AMARAL L.R. do;Engenharia Agrícola,2019

5. Tamanho e forma ideais da unidade experimental em ensaio com milho;ASSIS J.P. de;Agropecuária Técnica,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3