Anatomy and physiology of Cattail as related to different population densities

Author:

CORRÊA F.F.1,MADAIL R.H.2,BARBOSA S.3,PEREIRA M.P.1,CASTRO E.M.1,SORIANO C.T.G.1,PEREIRA F.J.1

Affiliation:

1. Universidade Federal de Lavras, Brazil

2. Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Brazil

3. Universidade Federal de Alfenas, Brazil

Abstract

The objective of this work was to evaluate the effects of the population density of Typha angustifolia plants in the anatomical and physiological characteristics. Plants were collected from populations of high density (over 50% of colonization capacity) and low density (less than 50% of colonization capacity) and cultivated under controlled greenhouse conditions. Plants from both populations were grown in plastic trays containing 4 L of nutritive solution for 60 days. At the end of this period, the relative growth rate, leaf area ratio, net assimilatory rate, root/shoot ratio, leaf anatomy, root anatomy, and catalase and ascorbate peroxidase activities were evaluated. Plants from high density populations showed increased growth rate and root/shoot ratio. Low density populations showed higher values of stomatal index and density in leaves, as well as increased palisade parenchyma thickness. Root epidermis and exodermis thickness as well as the aerenchyma proportion of high density populations were reduced, these plants also showed increased vascular cylinder proportion. Only catalase activity was modified between the high and low density populations, showing increased values in low density populations. Therefore, different Typha angustifolia plants show differences in its anatomy and physiology related to its origins on high and low density conditions. High density population plants shows increased growth capacity related to lower apoplastic barriers in root and this may be related to increased nutrient uptake capacity.

Publisher

FapUNIFESP (SciELO)

Subject

Plant Science,Agronomy and Crop Science,Physiology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3