Accuracy and learning curves of inexperienced observers for manual segmentation of electromyograms

Author:

Ferreira Arthur de Sá1,Guimarães Fernando Silva2,Magalhães Manuel Armando Ribeiro1,Silva Regina Coeli Souza e2

Affiliation:

1. Augusto Motta University Center, Brazil

2. Augusto Motta University Center

Abstract

INTRODUCTION: The shape-varying format of surface electromyograms introduces errors in the detection of contraction events. OBJECTIVE: To investigate the accuracy and learning curves of inexperienced observers to detect the quantity of contraction events in surface electromyograms. MATERIALS AND METHODS: Six observers performed manual segmentation in 1200 shape-varying waveforms simulated using a phenomenological model with variable events, smooth changes in amplitude, marked on-off timing, and variable signal-to-noise ratio (0-39 dB). Segmentation was organized in four sessions with 15 blocks of 20 signals each. Accuracy and learning curves were modeled per block by linear and power regression models and tested for difference among sessions. Cut-off values of signal-to-noise ratio for optimal manual segmentation were also estimated. RESULTS: The accuracy curve showed no significant linear trend throughout blocks and no difference among sessions 1-2-3-4 (87% [85; 89], 87% [85; 89], 87% [85; 89], 87% [81; 88]; p = 0.691). Accuracy was low for detection of 1 event (AUC = 0.40; sensitivity = 44%; specificity = 43%; cut-off = 12.9 dB) but was high and affected by the signal-to-noise ratio for detection of two events (AUC = 0.82; sensitivity = 77%; specificity = 76%; cut-off = 7.0 dB). The learning curve showed a significant power regression (p < 0.001) with decreasing values of learning percentages (time duration to complete the task) among sessions 1-2-3-4 (86.5% [68; 94], 76% [68; 91], 62% [38; 77], and 57% [52; 75]; p = 0.002). CONCLUSION: Inexperienced observers exhibit high, not trainable accuracy and a practice-dependent shortening in the time spent to detect the quantity of contraction events in simulated surface electromyograms.

Publisher

FapUNIFESP (SciELO)

Reference29 articles.

1. The extraction of neural strategies from the surface EMG;Farina D;J Appl Physiol,2004

2. Electromyography: physiology, engineering, and noninvasive applications;Merletti R,2004

3. Aspectos metodológicos da eletromiografia de superfície: considerações sobre os sinais e processamentos para estudo da função neuromuscular;Ferreira AS;Rev Bras Cienc Esporte,2010

4. Detection of onset and termination of muscle activity in surface electromyograms;Abbink JH;J Oral Rehabil,1998

5. A statistical method for the measurement of muscle activation intervals from surface myoelectric signal during gait;Bonato P;IEEE Trans Biomed Eng,1998

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3