Azospirillum brasilense affects the antioxidant activity and leaf pigment content of Urochloa ruziziensis under water stress

Author:

Bulegon Lucas Guilherme1,Guimarães Vandeir Francisco1,Laureth Jessica Cristina Urbanski1

Affiliation:

1. Universidade Estadual do Oeste do Paraná, Brazil

Abstract

ABSTRACT Water stress leads to the formation of reactive oxygen species, resulting in degradation of leaf pigments and cell death. This study aimed at assessing the oxidative enzyme activity and photosynthetic pigment content in seeds and/or leaves of Urochloa ruziziensis (syn. Brachiaria) inoculated with Azospirillum brasilense under water stress. Assessments of soluble proteins, chlorophylls a and b and carotenoid contents, as well as the activity of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) enzymes, were conducted at the beginning of the water stress process and also under severe water stress and during plant rehydration. Seed inoculation showed a reduction in the action of SOD, under water stress, with an increase after rehydration. POD exhibited an activity greater than CAT in all the assessments, but it did not differ statistically under severe water stress. CAT activity increased under severe stress in all treatments, particularly for leaf inoculation. Chlorophyll a was slightly degraded, maintaining the levels of the irrigated control, while the chlorophyll b and carotenoid contents, in plants subjected to leaf inoculation with A. brasilense, were higher under water stress. It was concluded that the leaf inoculation of U. ruziziensis with A. brasilense makes the plant more efficient at removing reactive oxygen species and protecting chlorophyll a.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3