Evaluation of the schistosomicidal efficacy of liposome - Entrapped Oxamniquine

Author:

Frézard Frédéric,Melo Alan Lane de

Abstract

Oxamniquine (OXA) was sucessfully encapsulated in small unilamellar vesicles using a pH gradient method. This procedure led to a high drug encapsulation efficiency (> 85%) at a drug to lipid molar ratio of 1/10. Moreover, these liposomes were found to retain encapsulated OXA efficciently under dialysis conditions at 37º C. Liposome-entrapped OXA (LOXA), OXA, and empty liposomes were tested against Schistosoma mansoni in a murine model. LOXA produced a significant reduction of the worm burden compared to the other preparations, when inoculated by subcutaneous route (s.c.) with 10 mg OXA/kg animal one day before the infection, and 3, 7, and 14 days after. However, LOXA was not effective when given 7 days before, or 35 days after infections. OXA, in the free form, was effective in relation to the untreated group, only when administered 3 days after the infection. Maximum effect of LOXA, with 97% reduction of the parasite number, was observed when the preparation was given s.c.one day before the infection. On the other hand, LOXA inoculated intraperitoneally one day before the infection didn’t show any reduction of the parasite count. It can be concluded that LOXA is more effective than OXA for the treatment of experimental schistosomiasis, particularly when administered subcutaneously at a time close to the infection

Publisher

FapUNIFESP (SciELO)

Subject

Infectious Diseases,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanotechnological approaches in the treatment of schistosomiasis: an overview;Beilstein Journal of Nanotechnology;2024-01-03

2. Potential application of nanotechnology in the treatment, diagnosis, and prevention of schistosomiasis;Frontiers in Bioengineering and Biotechnology;2022-12-09

3. Plant-derived compounds for the treatment of schistosomiasis: Improving efficacy via nano-drug delivery;Nigerian Journal of Clinical Practice;2022

4. Nano-targeted drug delivery for parasitic infections;Emerging Nanomaterials and Nano-Based Drug Delivery Approaches to Combat Antimicrobial Resistance;2022

5. Drug discovery technologies: Caenorhabditis elegans as a model for anthelmintic therapeutics;Medicinal Research Reviews;2020-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3