Affiliation:
1. State University of Rio de Janeiro, Brazil
Abstract
There are several neural network implementations using either software, hardware-based or a hardware/software co-design. This work proposes a hardware architecture to implement an artificial neural network (ANN), whose topology is the multilayer perceptron (MLP). In this paper, we explore the parallelism of neural networks and allow on-thefly changes of the number of inputs, number of layers and number of neurons per layer of the net. This reconfigurability characteristic permits that any application of ANNs may be implemented using the proposed hardware. In order to reduce the processing time that is spent in arithmetic computation, a real number is represented using a fraction of integers. In this way, the arithmetics is limited to integer operations, performed by fast combinational circuits. A simple state machine is required to control sums and products of fractions. Sigmoid is used as the activation function in the proposed implementation. It is approximated by polynomials, whose underlying computation requires only sums and products. A theorem is introduced and proven so as to cover the arithmetic strategy of the computation of the activation function. Thus, the arithmetic circuitry used to implement the neuron weighted sum is reused for computing the sigmoid. this resource sharing decreased drastically the total area of the system. After modeling and simulation for functionality validation, the proposed architecture synthesized using reconfigurable hardware. The results are promising.
Subject
Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering
Reference38 articles.
1. IEEE Workshop on FP-GAs for Custom Computing Machines;Bade S. L,1994
2. Hardware Reconfigurable Neural Networks;Beuchat J.-L,1998
3. Hardware Implementation of an Artificial Neural Network using Field Programmable Arrays;Botros N. M;IEEE Transactions on Industrial Electronics,1994
4. XMLP: a Feed-Forward Neural Network with Two-Dimensional Layers and Partial Connectivity;Canas A;Lecture Notes in Computer Science,2003
5. FPGA Implementations of Neural Networks;Canas A,2008
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献