Compact yet efficient hardware architecture for multilayer-perceptron neural networks

Author:

Silva Rodrigo Martins da1,Mourelle Luiza de Macedo1,Nedjah Nadia1

Affiliation:

1. State University of Rio de Janeiro, Brazil

Abstract

There are several neural network implementations using either software, hardware-based or a hardware/software co-design. This work proposes a hardware architecture to implement an artificial neural network (ANN), whose topology is the multilayer perceptron (MLP). In this paper, we explore the parallelism of neural networks and allow on-thefly changes of the number of inputs, number of layers and number of neurons per layer of the net. This reconfigurability characteristic permits that any application of ANNs may be implemented using the proposed hardware. In order to reduce the processing time that is spent in arithmetic computation, a real number is represented using a fraction of integers. In this way, the arithmetics is limited to integer operations, performed by fast combinational circuits. A simple state machine is required to control sums and products of fractions. Sigmoid is used as the activation function in the proposed implementation. It is approximated by polynomials, whose underlying computation requires only sums and products. A theorem is introduced and proven so as to cover the arithmetic strategy of the computation of the activation function. Thus, the arithmetic circuitry used to implement the neuron weighted sum is reused for computing the sigmoid. this resource sharing decreased drastically the total area of the system. After modeling and simulation for functionality validation, the proposed architecture synthesized using reconfigurable hardware. The results are promising.

Publisher

FapUNIFESP (SciELO)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference38 articles.

1. IEEE Workshop on FP-GAs for Custom Computing Machines;Bade S. L,1994

2. Hardware Reconfigurable Neural Networks;Beuchat J.-L,1998

3. Hardware Implementation of an Artificial Neural Network using Field Programmable Arrays;Botros N. M;IEEE Transactions on Industrial Electronics,1994

4. XMLP: a Feed-Forward Neural Network with Two-Dimensional Layers and Partial Connectivity;Canas A;Lecture Notes in Computer Science,2003

5. FPGA Implementations of Neural Networks;Canas A,2008

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3