Affiliation:
1. Universidade Federal de Viçosa, Brazil
2. GDM Genética do Brasil SA, Brasil
3. Universidade Estadual de Maringá, Brazil
Abstract
ABSTRACT: Near-infrared (NIR) spectroscopy is a promising tool for optimizing seed analyses quickly and assertively. The aim of this study was to investigate the viability of NIR in association with chemometric methods in classification of soybean seed lots regarding their physiological potential. We evaluated 372 soybean seed lots for vigor and obtained NIR spectra from seed samples. The original spectra were pre-processed by the following methods: Standard Normal Variate (SNV), SNV + 1st and 2nd derivatives, Gap-segment derivative, and Savitzky-Golay for the first- and second-degree derivatives, as well as combinations of the methods. The lots were divided into Class I (≥ 85% germination after accelerated aging) and Class II (< 85% germination after accelerated aging); and the pre-processed spectra were used to build classification models through the following methods: K-nearest neighbors (KNN), Partial Least Squares - Discriminant Analysis (PLS-DA), Naive Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM). The PLS-DA model showed greater classification accuracy and kappa, followed by SVM. The lowest accuracy values were obtained for the NB and RF models. The regions between the wavelengths 1,000-1,200 nm and 2,200-2,500 nm were the most important for distinguishing the quality levels of soybean seeds.
Reference25 articles.
1. Near-infrared spectroscopy used to predict soybean seed germination and vigour;AL-AMERY M.;Seed Science Research,2018
2. Rapid measurement of soybean seed viability using kernel-based multispectral image analysis;BAEK I.;Sensors,2019
3. Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality;BIANCHINI V.M.;Plant Methods,2021
4. Quality and chemical composition of soybean seeds with different lignin contents in the pod and seed coat subjected to weathering deterioration in pre-harvest;BRZEZINSKI C.R.;Journal of Seed Science,2022
5. Physiological quality and seed chemical composition of soybean seeds under different altitude;CAPELIN M. A.;Bragantia,2022