Prediction of combined effects of fibers and nanosilica on the mechanical properties of self-compacting concrete using artificial neural network
Author:
Affiliation:
1. University of Technology, IRAN
2. Islamic Azad University Qaemshahr, Iran
3. Road, Housing and Urban Development Research Center, Iran
Publisher
FapUNIFESP (SciELO)
Subject
Mechanical Engineering,Mechanics of Materials,Ocean Engineering,Aerospace Engineering,Automotive Engineering,General Materials Science,Civil and Structural Engineering
Link
http://www.scielo.br/pdf/lajss/v11n11/v11n11a02.pdf
Reference41 articles.
1. Effect of sulfates on bond behavior between carbon fiber reinforced polymer sheets and concrete;Al-Rousan R;Materials & Design,2013
2. Mechanical, durability and microstructural characteristics of ultra-high-strength self-compacting concrete incorporating steel fibers;El-Dieb Amr S.;Materials & Design,2009
3. Application of ANN to evaluate effective parameters affectingfailure load and displacement of RC buildings;Arslan MH;Nat Hazards Earth SystSci J,2009
4. Prediction of forcereduction factor R of prefabricated industrial buildings using neural networks;Arslan MH;StructEngMech,2007
5. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of selfcompacting concrete;Morteza H.;Materials & Design,2013
Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neural network - Game theory coupled approach for predicting flexural performance of fibre-reinforced concrete;Journal of Building Engineering;2024-06
2. Effect of fiber type, size, and utilization rate on mechanical and thermal properties of lightweight concrete facade panels;Structural Concrete;2024-03-26
3. Durability, thermo-physical characteristics, and mechanical strength prediction of green Portland cement matrix incorporating recycled soda-lime glass and lead glass;Heliyon;2024-02
4. To determine the compressive strength of self-compacting recycled aggregate concrete using artificial neural network (ANN);Ain Shams Engineering Journal;2023-12
5. Modeling and Prediction of Embarkment Dam Displacement under Earthquake Loading Using PSO-ANN;2023-08-17
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3