Bending reinforced concrete beams with glass fiber reinforced polymer bars: an experimental analysis

Author:

Fernandes Tales Viebrantz1ORCID,Paliga Aline Ribeiro1ORCID,Paliga Charlei Marcelo1ORCID

Affiliation:

1. Univesidade Federal de Pelotas, Brasil

Abstract

abstract: There is a recurring need to construct in places where environmental aggressiveness is very high, such as tidal-splash sites, chemical industries, etc. In these places, steel bars, commonly used for concrete reinforcement, can suffer deterioration, losing cross-sectional area and consequently the resistant capacity. In this regard, Glass Fiber Reinforced Polymers (GFRP) bars can replace steel because of its high strength to harsh environments, low weight and high tensile strength. Thus, this work aimed to compare reinforced concrete beams with steel bars and GFRP bending bars using the procedures indicated in ABNT:NBR 6118 and ACI 440.1R-15, respectively. Experimental three-point flexural tests were performed on six concrete beams, three reinforced with steel bars and three reinforced with GFRP bars. The beams were designed for centered point loads of 23.5 kN, 37.5 kN and 57 kN, and for each load one beam was reinforced in steel and one in GFRP. As main conclusions, it can be said that the beams reinforced with GFRP bars presented greater transverse displacements due to the low modulus of elasticity of this material. In addition, the beams presented rupture loads close to each design load, showing agreement in the recommendations of the two normative documents. Comparing the maximum loads of steel and GFRP beams, ratios of +9.3%, -3.2% and -3% were obtained for beams designed for 23.5 kN, 37.5 kN and 57 kN, respectively. Also, that variations in design loads cause greater variation in the longitudinal reinforcement rate of GFRP bar-beams compared to steel-bar beams.

Publisher

FapUNIFESP (SciELO)

Reference16 articles.

1. Análise teórica e experimental de vigas de concreto armadas com barras não metálicas de GFRP;Tavares D. H.,2006

2. Durabilidade e Proteção do Concreto Armado.;Medeiros M. H. F.,2009

3. Patologia de Estruturas.;Bolina F. L.,2019

4. Rehabilitación y Mantenimiento de Estructuras de Concreto.;Pereira F.,2007

5. Numerical simulation of GFRP reinforced concrete beams;Zhao X.;Adv. Mater. Sci. Eng.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3