Flexure shear capacity of prestressed hollow core slabs

Author:

Catoia Bruna1ORCID,Rocha Arthur Lima1ORCID,Ferreira Marcelo de Araújo1ORCID

Affiliation:

1. Universidade Federal de São Carlos, Brasil

Abstract

ABSTRACT: Provided that the anchorage capacity is guaranteed at the supports, the bearing capacity of hollow core slabs depends on the shear capacity of the pretensioned concrete webs, wherein the critical section is in a region between h and 2h from the support. For line loads acting within 2h to 6h from the supports, especially for shallow slabs 150 to 200 mm deep, it is likely to have flexure-shear cracks within the transfer region, wherein the bearing capacity is highly affected by the actual prestressing forces at the critical section. Therefore, one of the major questions pondered by structural engineers is to determine the effective amount of prestressing force that affects the shear resistance mechanism near to the support. According to ABNT NBR 14861:2011, the shear capacity is based on the flexure-shear mechanism, wherein the shear strength is a sum of the tensile concrete strength in the slab webs plus the contribution of the prestressing forces at the critical section, wherein a coefficient of 0.15 is considered. However, in both codes NBR 14861 and NBR 6118 it is required that this coefficient 0.15 should be further multiplied by an additional reduction factor in order to take into account the effect of the transmission length near to the support. Considering the current revision of the NBR 14861, this paper presents a theoretical-experimental comparison from standard shear tests of hollow core slabs with nominal depths from 150 to 200 mm carried out in different research at NETPre-UFSCar. Based on the analytical study of each term of the equation for the flexure-shear capacity, it has been observed that the coefficient 0.15 provides a conservative limit for the contribution of the actual prestressing force. Therefore, there is no need to apply any additional reduction factor in order to guarantee a safe design limit for the shear capacity.

Publisher

FapUNIFESP (SciELO)

Reference20 articles.

1. Cross Section Design.;Lindström G.,2007

2. Laje Pré-Fabricada – Painel Alveolar de Concreto Protendido – Requisitos, NBR 14861,2011

3. Guide to Good Practice: Special Design Considerations for Precast Prestressed Hollow Core Floors.,2000

4. Projeto de Estruturas de Concreto – Procedimento, NBR 6118,2014

5. Model Code for Concrete Structures.,1978

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3