Concrete modeling using micromechanical multiphase models and multiscale analysis

Author:

Silva Rodrigo Mero Sarmento da1ORCID,Barboza Aline da Silva Ramos2ORCID

Affiliation:

1. Instituto Federal de Alagoas, Brasil

2. Universidade Federal de Alagoas, Brasil

Abstract

abstract: Concrete in its macrostructure is a multiphase cementitious composite material, however, by reducing its scale, it is possible to identify the phases that compose it, among the phases are those embedded in the microscale: the hydrated silicates, in the mesoscale: the cement paste, transition zones and aggregates and in the macro phase: the composite itself. Modeling this type of material with two-phase micromechanical models is common in the literature, but there are already proven limitations that two-phase models can provide high modeling errors and are not recommended for this type of study. Faced with this problem, an alternative would be to use multiple-phase models, combined with a multiscale perspective in an attempt to minimize the error in modeling this material. The present paper models the concrete in two different constructions: without an interfacial transition zone and with the inclusion of the interfacial transition zone, verifying the modeling error when neglecting this important phase. The entire homogenization process is performed using the decoupled multiscale technique, obtaining results that rule out the use of two-phase models and methodologies that do not evaluate the interfacial transition zone in conventional concrete. The results obtained with the use of multiple-phase models reduced the relative error to practically zero (compared to experimental tests), demonstrating that micromechanics can be a concrete modeling tool provided that the multiscale process considers as many as possible phases and robust models that take this nature into account.

Publisher

FapUNIFESP (SciELO)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3