Shear and punching shear according to the Critical Shear Crack Theory: background, recent developments and integration in codes

Author:

Muttoni Aurelio1ORCID,Simões João Tiago1ORCID

Affiliation:

1. Ecole Polytechnique Fédérale de Lausanne, Switzerland

Abstract

Abstract The Critical Shear Crack Theory (CSCT) has been developed since 1985 to assess the shear resistance of members without shear reinforcement and the punching shear resistance of reinforced concrete slabs in a rational manner. The main idea of the CSCT is that the shear resistance is governed by the development of a critical shear crack, its geometry and its kinematics. Recent shear tests with detailed measurements have confirmed that the shear force can be carried through the critical shear crack by a combination of aggregate interlocking, residual tensile strength of concrete, dowel action of the longitudinal reinforcement, inclination of the compression zone and activation of the shear reinforcement crossed by the critical shear crack if present. On the basis of advanced constitute laws, all these contributions can be calculated as a function of the crack geometry and its kinematic. Simplifications of the resulting general formulations have been implemented in several standards including the fib Model Code 2010 and, in its recent closed-form format, in the second generation of the European Standard for Concrete Structures. The generality of the models allows accounting for several materials and cases, as for instance the presence of axial forces, fiber reinforced concrete, non-metallic reinforcements and designing strengthening using several techniques. This document presents the historical framework of the development of the theory, followed by a short presentation of its most up-to-date refined models. The derivation of closed-form solutions based on the CSCT and how it leads to expressions in a format similar to the current European Standard for Concrete Structures is also discussed. Eventually, for the case of punching, some recent developments are shown in what refers the capability of the refined mechanical model to capture the relationship between the acting punching load, the rotation and the shear deformation during loading and at failure.

Publisher

FapUNIFESP (SciELO)

Subject

General Medicine

Reference133 articles.

1. fib Bulletin No. 57 – Shear and Punching Shear in RC and FRP Elements;Muttoni A.,2010

2. The Modified Compression-Field Theory for reinforced concrete elements subjected to shear;Vecchio F. J.;ACI J. Proc.,1986

3. Some Plastic Solutions Concerning the Load-Carrying Capacity of Reinforced Concrete: Report No. R-101;Jensen J. F.,1978

4. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements;Bentz E. V.;ACI Struct. J.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3