Artificial neural networks application to predict bond steel-concrete in pull-out tests

Author:

LORENZI A.1,SILVA B. V.1,BARBOSA M. P.2,SILVA FILHO L. C. P.1

Affiliation:

1. Federal University of Rio Grande do Sul, Brazil

2. Federal University of São Paulo, Brazil

Abstract

Abstract This study aims the possibility of using the pull-out test results - bond tests steel-concrete, that has been successfully carried out by the research group APULOT since 2008 [1]. This research demonstrates that the correlation between bond stress and concrete compressive strength allows estimate concrete compressive strength. However to obtain adequate answers testing of bond steel-concrete is necessary to control the settings test. This paper aims to correlate the results of bond tests of type pull-out with its variables by using Artificial Neural Networks (ANN). Though an ANN is possible to correlate the known input data (age rupture, anchorage length, covering and compressive strength of concrete) with control parameters (bond stress steel-concrete). To generate the model it is necessary to train the neural network using a database with known input and output parameters. This allows estimating the correlation between the neurons in each layer. This paper shows the modeling of an ANN capable of performing a nonlinear approach to estimate the concrete compressive strength using the results of steel-concrete bond tests.

Publisher

FapUNIFESP (SciELO)

Reference37 articles.

1. Controle de qualidade dos concretos estruturais: ensaio de aderência aço-concreto;LORRAIN M. S.;Revista Concreto & Construções,2008

2. Aplicação de redes neurais artificiais para estimativa da resistência à compressão do concreto a partir da velocidade de propagação do pulso ultra-sônico;LORENZI A,2009

3. Investigação do potencial dos ensaios APULOT e pull-out para estimativa da resistência a compressão do concreto;SILVA B. V,2010

4. Estimation of compressive strength based on Pull-Out bond test results for on-site concrete quality control;LORRAIN M. S.;IBRACON Structures and Materials Journal,2011

5. Intelligent Systems for Engineering - A Knowledge-based Approach;SRIRAM R. D.,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3