Global analysis of DEF damage to concretes with and without fly-ash

Author:

Hasparyk Nicole Pagan1ORCID,Schovanz Dioice2ORCID,Tiecher Francieli2ORCID,Kuperman Selmo Chapira3ORCID

Affiliation:

1. Furnas Centrais Elétricas S.A., Brasil

2. IMED Campus Passo Fundo, Brasil

3. Desek Ltda., Brasil

Abstract

Abstract Delayed Ettringite formation (DEF) is an internal expansive reaction that can damage concrete. DEF is strongly influenced by the temperature, above about 60-65°C, and other factors involving cement chemistry especially, but also its physical characteristics. The exposure environment over time also promotes a condition to increase deterioration from DEF. Expansions results from secondary ettringite formation are progressive and can lead concrete to microcracking impacting its performance and durability over time. Several concrete structures are pointed to be severely attacked by DEF, and test method as well a better comprehension on this pathology is necessary to promote specific and proper preventive measures to avoid future damages. Furthermore, compared to alkali-silica reaction, DEF occurs more readily and aggressively, and sometimes prematurely, depending on several factors, such as type of cement, concrete mix design, exposure conditions, among others. This paper involves an overall analysis of the behavior of concretes with two types of Portland cements (High early-strength cement and a Portland pozzolanic cement, with fly-ash) in relation to DEF process. Several data from a laboratory study where DEF was induced through a specific thermal curing procedure are presented and discussed. The analyses involved the assessment of physical, mechanical, and expansive properties besides microstructural monitoring of samples from concretes over time. These experiments allowed detecting high values of expansions from DEF (up to 1.2%) in the concrete without fly ash. The mechanical properties were severely impacted from this deleterious process; as expansions increased, losses in the mechanic and elastic properties were verified. Expansion levels in the order of 0.5% prompted remarkably high reductions and, at about 1% the losses were relevant for both strengths (tensile and compressive) and modulus of elasticity, of 60% and 80%, respectively, in the presence of cement without fly-ash. Concrete microstructure has indicated massive formations of ettringite as well as micro-cracking and the fragility of the cement matrix because of DEF. On the other hand, expansion up to 0.2% did not promote important negative effects on the properties of concrete, especially with the pozzolanic cement tested. Furthermore, an overall approach with several correlations between physical and mechanical properties was taken to obtain different levels of deterioration for a concrete presenting DEF.

Publisher

FapUNIFESP (SciELO)

Reference61 articles.

1. Delayed ettringite formation;Taylor H. F. W.;Cement Concr. Res.,2001

2. A state-of-the-art review on delayed ettringite attack on concrete;Collepardi M.;Cement Concr. Compos.,2003

3. Pore size analyses of cement paste exposed to external sulfate attack and delayed ettringite formation;Gu Y.;Cement Concr. Res.,2019

4. Sustainability, transfer and containment properties of concrete subject to delayed ettringite formation (DEF);Pichelin A.;Cement Concr. Compos.,2020

5. Concreto: Estrutura, Propriedades e Materiais.;Mehta P. K.,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3