Integration of Allelopathic Crop Residues and NPK Fertilizer to Mitigate Residue-Phytotoxicity, Improve Soil Fertility and Wheat Growth under Different Moisture Conditions

Author:

FAROOQ N.1,IQBAL M.1,ZAHIR Z.A.1,FAROOQ M.1

Affiliation:

1. University of Agriculture, Pakistan

Abstract

ABSTRACT: Phytotoxic effects of allelopathic crop residues are important to trickle for their use as a source of organic amendments to improve soil fertility. In present study, through pots and two year field studies, we examined the integrated effect of allelopathic residues and NPK fertilizer treatments including T0 (control), T1 (200-150-100 kg NPK ha 1), T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1), T3 (100-75-50 kg NPK ha-1 + rice straw 4 t ha-1), T4 (mung bean straw 8 t ha-1) and T5 (rice straw 8 t ha-1) under different water regimes on soil fertility and wheat crop. Solo application of mung bean residue and rice straw caused significant inhibition of various germination and growth traits of wheat while minimal inhibition occurred when allelopathic straws were integrated with NPK fertilizer both under laboratory and field conditions, especially under 14 days of alternate wet/dry cycles. Among fertilizer treatments, mung bean residue caused a greater increase in soil organic carbon, available nitrogen and available phosphorus, while there was maximum percent increase in available potassium with T1 (200-150-100 kg NPK ha-1). Maximum increase in grain yield (30% and 33%) was achieved with T2 (100-75-50 kg NPK ha-1 + mung bean straw 4 t ha-1) during 2014-15 and 2015-16, respectively. Integration of allelopathic crop residues with inorganic fertilizers and alternate wet/dry cycles can help to reduce the possible phytotoxic effect of allelopathic residues for sustainable wheat production.

Publisher

FapUNIFESP (SciELO)

Subject

Plant Science,Agronomy and Crop Science,Physiology,Biochemistry

Reference50 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3