The influence of chemical activation on hardness of dual-curing resin cements

Author:

Fonseca Renata Garcia1,Cruz Carlos Alberto dos Santos1,Adabo Gelson Luis1

Affiliation:

1. São Paulo State University

Abstract

During the cementation of metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. This study evaluated the influence of chemical activation compared with dual-curing (chemical and light activation), on the hardness of four dual-curing resin cements. In a darkened environment, equal weight proportions of base and catalyst pastes of the cements Scotchbond Resin Cement, Variolink II, Enforce and Panavia F were mixed and inserted into moulds with cavities of 4 mm in diameter and 2 mm in height. Subsequently, the cements were: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated (dual-curing = dual-cured groups). The Vickers hardness number was measured at 1 hour, 24 hours and 7 days after the start time of cements' spatulation. For all the cements, the hardness values of self-cured groups were lower than those of the respective dual-cured groups at 1 hour and 24 hours. At 7 days, this behavior continued for Variolink II and Panavia F, whilst for Scotchbond Resin Cement and Enforce there was no statistical difference between the two activation modes. All cements showed a significant increase in their hardness values from 1 hour to 7 days for both activation modes. Of the self-cured groups, Scotchbond Resin Cement and Variolink II presented the highest and the lowest hardness values, respectively, for all three times tested. Within the limitations of this study, up to the time of 24 h, chemical activation alone was unable to promote similar hardness as to that obtained with dual-curing.

Publisher

FapUNIFESP (SciELO)

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3