Prediction of ‘Gigante’ cactus pear yield by morphological characters and artificial neural networks

Author:

Guimarães Bruno V. C.1ORCID,Donato Sérgio L. R.2ORCID,Azevedo Alcinei M.3ORCID,Aspiazú Ignacio4ORCID,Silva Junior Ancilon A. e2ORCID

Affiliation:

1. Instituto Federal do Amazonas, Brazil

2. Instituto Federal Baiano, Brazil

3. Universidade Federal de Minas Gerais, Brazil

4. Universidade Estadual de Montes Claros, Brazil

Abstract

ABSTRACT Estimating cactus pear yield is important for the planning of small and medium rural producers, especially in environments with adverse climatic conditions, such as the Brazilian semi-arid region. The objective of this study was to evaluate the potential of artificial neural networks (ANN) for predicting yield of ‘Gigante’ cactus pear, and determine the most important morphological characters for this prediction. The experiment was conducted in the Instituto Federal Baiano, Guanambi campus, Bahia, Brazil, in 2009 to 2011. The area used is located at 14° 13’ 30” S and 42° 46’ 53” W, and its altitude is 525 m. Six vegetative agronomic characters were evaluated in 500 plants in the third production cycle. The data were subjected to ANN analysis using the R software. Ten network architectures were trained 100 times to select the one with the lowest mean square error for the validation data. The networks with five neurons in the middle layer presented the best results. Neural networks with coefficient of determination (R2) of 0.87 were adjusted for sample validation, assuring the generalization potential of the model. The morphological characters with the highest relative contribution to yield estimate were total cladode area, plant height, cladode thickness and cladode length, but all characters were important for predicting the cactus pear yield. Therefore, predicting the production of cactus pear with high precision using ANN and morphological characters is possible.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Environmental Engineering

Reference22 articles.

1. Palma forrageira em dietas de novilhas leiteiras confinadas: Desempenho e viabilidade econômica;Aguiar M. do S. M. A.;Semina: Ciências Agrárias,2015

2. Síntese de proteína microbiana e concentração de ureia em novilhas leiteiras alimentadas com palma forrageira Opuntia;Aguiar M. do S. M. A.;Semina: Ciências Agrárias,2015

3. Fenotipagem de alta eficiência para vitamina A em banana utilizando redes neurais artificiais e dados colorimétricos;Aquino C. F.;Bragantia,2016

4. Qualidade pós-colheita de banana 'Maçã' tratada com ácido giberélico avaliada por redes neurais artificiais;Aquino C. F.;Pesquisa Agropecuária Brasileira,2016

5. Application of artificial neural networks in indirect selection: A case study on the breeding of lettuce;Azevedo A. M.;Bragantia,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3