Phytomass and production components of colored cotton under salt stress in different phenological stages

Author:

Soares Lauriane A. dos A.1ORCID,Fernandes Pedro D.1ORCID,Lima Geovani S. de1ORCID,Silva Saulo S. da1ORCID,Moreira Rômulo C. L.1ORCID,Medeiros Thamara L. F.1ORCID

Affiliation:

1. Universidade Federal de Campina Grande, Brazil

Abstract

ABSTRACT Scarcity of good quality water is a limiting factor for irrigated agriculture, especially in semi-arid regions, which induces the use of waters with high salt concentration in crop irrigation. In view of the above, the objective of this study was to evaluate the phytomass accumulation and production components of colored cotton genotypes during the different development stages, under conditions of high salinity, with plants grown in lysimeters under greenhouse conditions, at the Center for Technology and Natural Resources of the Federal University of Campina Grande, Paraíba, Brazil. Three cotton genotypes (‘BRS Rubi’, ‘BRS Topázio’ and ‘BRS Safira’) irrigated with salinized water (9 dS m-1) during the three stages of crop development (vegetative, flowering and fruiting) were evaluated. The experiment was conducted in a randomized block design with three repetitions and three plants per plot, in drainage lysimeters filled with 24.5 kg of an Oxisol, with sandy loam texture. Irrigation with salinized water during the vegetative stage promoted greater phytomass accumulation in the genotypes of naturally colored cotton. In the initial stages of the cotton development, irrigation with saline water can be used with the lowest losses in production components, which are negatively affected when saline water is applied in the fruiting stage. Among the genotypes, ‘BRS Topázio’ is the most tolerant to irrigation water salinity in terms of seed cotton weight and lint cotton weight, regardless of the development stage.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3