Estimates of reference evapotranspiration in the municipality of Ariquemes (RO) using neural networks GMDH-type

Author:

Carvalho Roberto L. da S.1ORCID,Delgado Angel R. S.2ORCID

Affiliation:

1. Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, Brazil; Universidade Federal Rural do Rio de Janeiro, Brazil

2. Universidade Federal Rural do Rio de Janeiro, Brazil

Abstract

ABSTRACT Reference evapotranspiration is a climatological variable of great importance for water use dimensioning in irrigation methods. In order to contribute to the climatic understanding of Ariquemes, Rodônia state, Brazil, the study aims to model the behavior of the time series of reference evapotranspiration using a GMDH-type (Group Method of Data Handling) artificial neural network (ANN) and to compare it with the SARIMA (Seasonal Autoregressive Integrated Moving Average) methodology. Data from the National Institute of Meteorology - INMET, obtained at the Automatic Weather Station of Ariquemes, from January 2011 to January 2014, were used. Data analysis was performed using software R version 3.3.1 through the GMDH-type ANN package. Modeling by GMDH-type ANN led to results similar to the results of the SARIMA model, thus constituting an option to predict climatic time series. GMDH-type models with larger numbers of inputs and layers presented lowest mean square error.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Environmental Engineering

Reference28 articles.

1. Estimating missing weather data for agricultural simulations using group method of data handling;Acock M. C.;Journal of Applied Meteorology,2000

2. Crop evapotranspiration: Guidelines for computing crop water requirements;Allen R. G.,1998

3. Estimativa da evapotranspiração de referência através de redes neurais artificiais;Alves Sobrinho T.;Revista Brasileira de Meteorologia,2011

4. A hybrid group method of data handling (GMDH) with the wavelet decomposition for time series forecasting: A review;Basheer H.;ARPN Journal of Engineering and Applied Sciences,2016

5. Simulation and prediction with seasonal ARIMA models;Boshnakov G. N.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3