Sediment production and soil water infiltration under different simulated rainfall characteristics

Author:

Almeida Wilk S. de1ORCID,Carvalho Daniel F. de2ORCID,Pereira Fernandes A. C.3ORCID,Rouws Janaína R. C.4ORCID

Affiliation:

1. Instituto Federal de Educação, Ciência e Tecnologia de Rondônia, Brazil

2. Universidade Federal Rural do Rio de Janeiro, Brazil

3. Universidade Federal de Lavras, Brazil

4. Empresa Brasileira de Pesquisa Agropecuária, Brazil

Abstract

ABSTRACT The study was carried out to evaluate sediment production, water infiltration and surface runoff in an Ultisol under simulated rainfalls with similar erosivity, but different combinations of intensity (Int) and duration (Dur). The rainfalls were applied after soil tillage in the period from August to September 2017, in Seropédica, RJ State, Brazil. Using a computer program, the treatments were defined from the erosivity calculated for a rainfall with intensity of 60 mm h-1 and duration of 60 min, resulting in the other combinations of Int and Dur: 44.5 mm h-1 and 106 min; 53.5 mm h-1 and 78 min; 66.9 mm h-1 and 48 min; and 76.5 mm h-1 and 38 min, in a completely randomized design with five repetitions. Sediment production varied from 2.17 to 6.11 g m-2, respectively, in the treatments with Int 53.5 mm h-1 and Dur 78 min and Int 44.5 mm h-1 and Dur 106 min. Stable infiltration rate (mm h-1) were 21.6, 37.7, 31.4, 29.5, and 22.4, respectively, in the treatments Int 44.5 mm h-1 and Dur 106 min; Int 53.5 mm h-1 and Dur 78 min; Int 60.4 mm h-1 and Dur 60 min; Int 66.9 mm h-1 and Dur 48 min; and Int 76.5 mm h-1 and Dur 38 min. The different combinations of intensity and duration of rainfalls with similar erosivity change sediment production, but do not significantly influence surface runoff and water infiltration in the soil.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3