Modeling of operational performance parameters applied in mechanized harvest of coffee

Author:

Cunha João P. B.1,Silva Fabio M. da2,Andrade Ednilton T. de2,Carvalho Luis C. C.3

Affiliation:

1. Universidade Federal Rural do Rio de Janeiro, Brazil

2. Universidade Federal de Lavras, Brazil

3. Universidade Estadual de Santa Cruz, Brazil

Abstract

ABSTRACT In super-mechanized coffee harvesting system, all operations are performed mechanically. In order to improve the logistics of mechanized agricultural operations, the knowledge on the variables that affect the operational performance can generate models to accurately estimate these parameters. The use of response surface methodology (RSM) allows to verify the influence of different independent variables and the generated response to allow for a great value. This study aimed to verify, using RSM, the influence of speed, mean length of rows and the slope of the areas on the operational performance parameters in different mechanized operations in coffee production, such as: harvest, sweeping and gathering. The results show that the slope directly influences the operational performance of the mechanical harvesting of coffee. The RSM proved to be an important tool to verify the effect of variables on performance parameters, and the generated models showed high significance.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Environmental Engineering

Reference25 articles.

1. Componentes químicos e estudo da umidade de equilíbrio em vagens de algaroba;Almeida F. A. C.;Revista Brasileira de Produtos Agroindustriais,2003

2. ASAE D497.2 Agricultural machinery management data,1999

3. Avaliação técnica e econômica da extração de madeira de eucalipto com “track-skidder” em região montanhosa;Birro M. H. B.;Revista Árvore,2002

4. Desempenho operacional e produtividade agrícola do crambe nos preparos convencional e reduzido de solo;Brandão F. J. B.;Enciclopédia Biosfera,2013

5. Avaliação técnica e econômica do harvester em diferentes condições operacionais;Burla E. R.;Engenharia na Agricultura,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3