Genetic algorithm in the design of soybean silos for airflow homogenization

Author:

Petravicius Daniel1ORCID,Binelo Manuel O.1ORCID,Binelo Marcia de F. B.1ORCID,Faoro Vanessa2ORCID,Silva José A. G. da1ORCID

Affiliation:

1. Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Brazil

2. Universidade Federal de Santa Maria, Brazil

Abstract

ABSTRACT One of the main processes used to maintain grain quality in large storage bins is aeration. An optimization model that considers the limited and discrete nature of the air inlets, in addition to the geometric characteristics of the storage bin, could produce results more easily applicable results for the design of new grain storage bins. The objective of this study was to parameterize and to apply the Darcy-Forchheimer model for simulating airflow in soybean grain mass as function of grain layer height, and develop an artificial intelligence method based on genetic algorithm for optimizing grain storage bin dimensions and air inlet configurations to obtain a more homogeneous airflow in the grain mass. The parameterization considered the effect of grain compaction and the OpenFOAM simulations showed good agreement with the experimental data. The proposed genetic algorithm was able to increase the airflow homogenization when compared to the grain storage bin used as reference.

Publisher

FapUNIFESP (SciELO)

Subject

Agricultural and Biological Sciences (miscellaneous),Agronomy and Crop Science,Environmental Engineering

Reference17 articles.

1. Airflow simulation and inlet pressure profile optimization of a grain storage bin aeration system;Binelo M. O.;Computers and Electronics in Agriculture,2019

2. Storage of soybean seeds: Packaging and modified atmosphere technology;Capilheira A. F.;Revista Brasileira de Engenharia Agrícola e Ambiental,2019

3. Experimental silo-dryer-aerator for the storage of soybean grains;Coradi P. C.;Revista Brasileira de Engenharia Agrícola e Ambiental,2018

4. Models to predict the thermal state of rice stored in aerated vertical silos;Khatchatourian O. A.;Biosystems Engineering,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3