Simulation of wheat yield by nitrogen and nonlinearity of environmental conditions

Author:

Trautmann Ana P. B.1ORCID,Silva José A. G. da1ORCID,Binelo Manuel O.1ORCID,Valdiero Antonio C.2ORCID,Henrichsen Luana1ORCID,Basso Natiane C. F.1ORCID

Affiliation:

1. Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Brazil

2. Universidade Federal de Goiás, Brazil

Abstract

ABSTRACT Fuzzy logic can simulate wheat productivity by assisting crop predictability. The objective of the study is the use of fuzzy logic to simulate wheat yield in the conditions of nitrogen use, together with the effects of air temperature and rainfall, in the main cereal succession systems in Southern Brazil. The study was conducted in the years 2014, 2015 and 2016, in Augusto Pestana, RS, Brazil. The experimental design was a randomized block design with four repetitions in a 4 x 3 factorial scheme for N-fertilizer doses (0, 30, 60, 120 kg ha-1) and nutrient supply forms [100% in phenological stage V3 (third expanded leaf); (70%/30%) in the phenological stage V3/V6 (third and sixth expanded leaf) and; fractionated (70%/30%) at the phenological stage V3/E (third expanded leaf and beginning of grain filling)], respectively, in the soybean/wheat and corn/wheat systems. The pertinence functions and the linguistic values established for the input and output variables are adequate for the use of fuzzy logic. Fuzzy logic simulates wheat grain yield efficiently in the conditions of nitrogen use with air temperature and rainfall in crop systems.

Publisher

FapUNIFESP (SciELO)

Subject

Agronomy and Crop Science,Environmental Engineering

Reference28 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3