Bioproduction of xylitol by Candida tropicalis 13803 from pistachio shell hydrolysate obtained through MW-HPCO2 system

Author:

Hazal Filiz1ORCID,Özbek Hatice Neval2ORCID,Yilmaztekin Murat3ORCID,Göğüş Fahrettin4ORCID,Koçak Yanık Derya5ORCID

Affiliation:

1. GAZIANTEP UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF FOOD ENGINEERING (ENGLISH), FOOD ENGINEERING PR. (ENGLISH)

2. GAZİANTEP ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, GIDA MÜHENDİSLİĞİ BÖLÜMÜ, GIDA BİLİMLERİ ANABİLİM DALI

3. İNÖNÜ ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, GIDA MÜHENDİSLİĞİ BÖLÜMÜ, GIDA MÜHENDİSLİĞİ PR.

4. GAZİANTEP ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, GIDA MÜHENDİSLİĞİ BÖLÜMÜ, GIDA MÜHENDİSLİĞİ PR. (İNGİLİZCE) (İÖ)

5. ESKİŞEHİR OSMANGAZİ ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, GIDA MÜHENDİSLİĞİ BÖLÜMÜ, GIDA MÜHENDİSLİĞİ ANABİLİM DALI

Abstract

Objective: Biotechnological xylitol production from secondary agricultural residues is a promising approach for a sustainable and environmental purpose. Lignocellulosic biomass is a significant feedstock for biofuel and biochemical production. Its accessibility, cost-effectiveness, renewability, and environmental friendliness make it an attractive alternative to fossil fuels and other conventional sources of energy and chemicals. Materials and methods: In this study, the conversion of xylan to xylose in a pistachio shell was provided with a novel technology of a microwave-assisted high-pressure CO2/H2O system. Xylose rich pistachio shell hydrolysate was utilized by Candida tropicalis ATCC 13803 for xylitol production. Different concentrations of xylose (50, 100, and 150 g/L) were employed for xylitol production in shake-flask. Results and conclusion: HMF and furfural were completely removed from xylose-rich hydrolysate by activated charcoal. The improvement in yeast performance was limited with increasing xylose concentration. The highest xylitol produced by C. tropicalis from pistachio shell hydrolysate (65.15 g/L) and the maximum yield of xylitol 0.66 g/g with 100 g/L xylose were obtained in shake-flask whereas xylitol produced at 50 g/L and 150 g/L xylose were 0.65 and 0.37 g/g, respectively. Volumetric productivity at 100 g/L of xylose was 1.28 times and 1.84 times higher compared to xylose concentrations of 50 g/L and 150 g/L, respectively. Xylitol production performance (71.73 g/L) of detoxified pistachio shell hydrolysate at 100 g/L of xylose was almost identical to pure xylose. However, the yeast was not able to consume xylose at 150 g/L resulting in no xylitol production.

Publisher

Central Research Institute of Food and Feed Control

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3