Immersion and invariance based adaptive attitude control of asteroid-orbiting spacecraft using modified Rodrigues parameters

Author:

W Lee Keum,N Singh Sahjendra

Abstract

The attitude control of an asteroid-orbiting spacecraft based on immersion and invariance (I&I) theory is the subject of this paper. It is assumed that the moment of inertia matrix and the gravitational parameters are not known. The objective is to attain nadir pointing attitude on an elliptic orbit. First, based on the I&I principle, an adaptive attitude control system using the Modified Rodrigues Parameters (MRPs) is derived. Through the Lyapunov stability analysis, the asymptotic convergence of the MRP trajectories to the origin is established. Interestingly, in contrast to traditional adaptive systems, the trajectories of the closed-loop system converge to an attractive manifold in an extended state space. Then, for the purpose of comparison, this MRPs-based control law and a quaternions-based control system (also designed using the I&I principle) are simulated for the attitude control of the spacecraft in eccentric orbits around asteroid 433 Eros. It is observed that while each I&I-based control law can accomplish precise attitude control, for identical design parameters in these two control systems, the MRPs-based control law requires smaller control magnitude and accomplishes smoother convergence of trajectories to the attractive manifold, but requires larger settling time for the attitude trajectories, compared with the quaternions-based adaptive control law.

Publisher

MedCrave Group Kft.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3