Diabetes potentiates ROS production in granulocytes from patients with chronic kidney disease

Author:

Nogueira-Machado Jose AugustoORCID,Ferreira Gabriela RossiORCID,Volpe Caroline Maria OliveiraORCID,Villar-Delfino Pedro HenriqueORCID,Rocha Silva FabianaORCID

Abstract

Background: Type 2 diabetes (DM2) and chronic kidney disease (CKD) are inflammatory pathologies. Diabetes is characterized by hyperglycemia and CKD by the gradual and irreversible loss of kidney function. Both diseases develop oxidative stress, and reactive oxygen species (ROS) play a pivotal role in the pathogenesis. This study aimed to determine ROS production by granulocytes from renal patients (CKD) with or without diabetes. Methods: Granulocytes from patients with DM2, CKD, CKD-DM2, and healthy controls were purified using the Ficoll-Hypaque gradient method. Granulocyte ROS generation in the absence or the presence of PDB (an activator of NADPH-oxidase) or Concanavalin A (Toll- receptor 3,9 activator) was evaluated in a luminol-dependent chemiluminescence method. The cell-free DNA in the serum of DM2, CKD, and CKD-DM2 patients was measured by the fluorescence method before and after hemodialysis. Results: Our results show a significant increase in ROS production by granulocytes from patients with CKD, DM2, and CKD-DM2 compared to healthy control (p<0.05). CKD-DM2 group produced the most significant ROS levels with or without NADPH-oxidase activation. ROS production showed a significant increase in the presence of ConA. In contrast, mitochondrial (internal) ROS showed a different ROS response. DNA extrusion was higher in the CKD-DM2 group after hemodialysis suggesting cell death. Conclusion: The results demonstrated that CKD-DM2 patients produced high ROS generation levels and increased DNA extrusion after hemodialysis. It may suggest that CKD-DM2 disease is more severe and has a worse clinical prognosis.

Publisher

MedCrave Group, LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3