3D characterization of the microstructure of LPBF- fabricated Inconel 718 alloy

Author:

Kang JinwuORCID,Huangb YuanHang,Yub Hailiang

Abstract

Laser powder bed fusion method is popularly applied in the additive manufacturing of metal parts. The void defect and microstructure are the main factors which determine their mechanical properties. However, the characterization of microstructure and cavities is two dimensional, which is hard to show the spatial profile. In this paper, in order to explore the microstructure and defects in three dimensions, the combined continuously slicing and microstructure observation was used to investigate the microstructure of an Inconel 718 sample. The sample was sliced 468 layers with thickness of 1 µm by xenon ion beam, a 142.8 µm* 107 µm* 46.8 µm microstructure cube was reconstructed. From the 3D model, the melt pool, cavity, pore and grains and their orientations were analyzed. The results provide spatial features of its microstructure. The equi-axed grains are among the coarse column grains, and some are the original grains of insufficiently melt or totally unmelt powder particles. The results tell the difference of the two kinds of voids, i.e., cavity and pore. Keywords: laser powder bed fusion, Inconel 718, microstructure, 3D characterization, pore, cavity

Publisher

MedCrave Group Kft.

Subject

Management Science and Operations Research,Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3