A hybrid model of constituent quarks

Author:

Arghirescu Marius

Abstract

The paper presents a hybrid model of constituent quark which considers the preonic structure based on z0 (34 me)-preon, specific to the previously published cold genesis theory (CGT) of the author and basic concepts of the S.M. which seem experimentally sustained, explaining the constituent quarks forming from current quarks and “gammonic” gluols –in concordance with the experimentally evidenced possibility of paired quarks forming from relativist jets of negatrons and positrons, by considering that the negatrons and positrons can form ‘gammonic’ “gluols” and thereafter- current and constituent quarks, by the magnetic and electric interactions between the paired quasielectrons (degenerate electrons), which can explain the constituent u- quark’s stability until the critical temperature 2x1012 K, without the concepts of “color charge” and of “virtual” gluon/boson. The resulted hybrid model can also explain why in strong interactions the sum rule can be applied correspondent with the transferring of some quarks from an interacting particle to another with the entire or almost entire their constituent mass. Also, it suggests that the mechanism of paired current u-quarks forming from gluons, used by the S. M., can be plausible in conformity with the mass conservation law only if the quantum vacuum contains real thermalized “gammons” considered as (e+e-)*-pairs of degenerate electrons.

Publisher

MedCrave Group Kft.

Reference27 articles.

1. Patrignani C. (Particle Data Group), "Quarks. Chin Phys C. 2016;40:100001.

2. Andersson B, Gustafson G, Ingelman G, et al. Parton fragmentation and string dynamics. Phys Rep. 1983;97(2-3):31-145.

3. Limits on the mass of the gluon;Yndurain;Physics Letters B,1995

4. Precision pins down the electron's magnetism. 2006.

5. ZEUS Collaboration. Limits on the effective quark radius from inclusive e-p scattering at HERA. Physics Letters B. 2016;468-472.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3