A suggested simple design and inverse kinematics for a multi-degrees-of-freedom robot arm

Author:

Pasha Khaled MK

Abstract

In this paper, architecture for the robot arm and a mathematical model was suggested to simplify the inverse kinematics that describes the movement and orientation of this end-effector. Although this design contains eight degrees of freedom, all the angular displacements and velocities could be formulated as functions of the three coordinates of the end-effecter starting point. These three values are enough to set the end-effector at the desired point in the workspace, and with the desired orientation. The tip of the end-effecter could be equipped with a grabber or any attached manufacturing tool. To check the reliability of the introduced mathematical model, a simple model for the arm was built using aluminum beams. The joints are actuated by stepper motors that are controlled by a microprocessor. The model executed the positioning and orientation of the end-effector with an accuracy of about 93% of any traveled distance. This lack of accuracy may be accounted for by the low resolutions of the used motors. In this study, the positioning and orientation were only considered, and future work is required for the analysis of loads and power capacities

Publisher

MedCrave Group Kft.

Subject

Industrial and Manufacturing Engineering

Reference16 articles.

1. Development of robotic arm control system using computational vision;Glaufe;IEEE Latin America Transactions,2019

2. Mohamed G Alkalla, Mohamed A Fanni. Integrated structure/control design of high-speed flexible robot arms using topology optimization. Mechanics Based Design of Structures and Machines. 2019;48(6):381-402.

3. Arduino controlled robotic arm;Aishwarya;International Journal of Trend in Scientific Research and Development,2018

4. Design, and implementation of robotic arm using IOT;Sundari;International Journal of Electronics and Communication Engineering (SSRG-IJECE),2018

5. Design of mobile robot with robotic arm utilizing microcontroller and wireless communication;Alit Swamardika;International Journal of Engineering and Technology (IJET),2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3