World’s first self-driving amphibious bus

Author:

Watabe Daishi,Wada Masayoshi,Shimizu Nobumitu,Ohkubo Tastuma

Abstract

Amphibious buses are extensively used worldwide for transporting people to and from tourist attractions across water and land. Although numerous studies on self-driving technologies have been reported, research on the automatic operation and navigation of an amphibious vehicle has been sparse; moreover, owing to the size of the amphibious vehicles, automatic transport of multiple people is not possible. Therefore, in this study, we attempted to realize unmanned operation of a sightseeing amphibious bus for 45 passengers. The bus was outfitted with a by-wire system. On the vessel side, an actuator, similar to that used in JOY cars, was installed to turn the captain’s steering wheel. We also developed a software for the automatic operation and navigation of the bus. The relationship between the car’s steering-wheel angle and the front-tire angles is linear, whereas that between the captain’s steering-wheel angle and the vessel’s rudder-plate angle is not (and was approximated with a sixth-order polynomial). Furthermore, Autoware—a leading autonomous-driving software utilizing model-based predictive control algorithms to control the steering wheel of automobiles—was employed in this work. These algorithms were altered using Nomoto’s KT vessel model equation to improve the accuracy of vessel-path tracking. To the best of our knowledge, till date, no studies have documented the functioning of self-driving vessels using predictive controls based on Nomoto’s KT vessel model equation. In accordance with the vessel navigation rules based on the Autoware obstacle avoidance logic, LiDAR, cameras, and sonars were employed to detect obstructions and give-way paths. Thus, we successfully demonstrated the working of world's first self-driving amphibious bus, with automated controls for entering/exiting water and during give-way operations.

Publisher

MedCrave Group Kft.

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3