Thermogenesis, aging and obesity in the LA Ntul/-cp (corpulent) rat

Author:

Tulp Orien L,P Einstein George

Abstract

Obesity and mild to moderate impaired carbohydrate tolerance develops in the obese phenotype of the LA/Ntul//-cp (corpulent) rat strain by 6 weeks of age. Groups (n=12-20 rats/phenotype] of female congenic lean and obese LA/Ntul//-cp (corpulent) rats were fed ad libitum standardized Purina #5012 diet ad house water for 4, 14, or 24 months of age. Measures of Body weight (BW) and of resting oxygen consumption (RMR; VO2) at thermal neutrality and for up to 45 minutes of (4°C) spontaneous cold exposure, and norepinephrine-stimulated thermogenesis (100 ug. s.c.) were determined at each age. Body weights of lean rats increased only gradually during the study (p=n.s.), but weights of obese phenotype were ~2-fold greater at 4 months (p=<0.05), 14 months (p-<0.01), and ~3.5 to 4-fold greater at 24 months of age (p=<0.01). Resting metabolic rates in the lean phenotype trended to decrease modestly by 24 months (p=<0.05) and were greater than resting metabolic rates in the obese phenotype at all ages studied (p=<0.05). Cold exposure at 4°C resulted in a dramatic ~5-fold increase in the oxygen consumption after 5 minutes in 4-month-old rats, which subsided to ~2x resting metabolic rate within 15 minutes and remained constant thereafter in the lean phenotype. In 14-months old lean rats the increase in oxygen consumption at 5 minutes averaged ~4-fold increase over resting levels and returned to ~2x resting levels from 15 to 45 minutes 4°C exposure. In 24-month-old lean rats however, the cold induced increases in metabolism were markedly diminished to only ~3x resting metabolic rates at 5 minutes cold exposure but remained similar to the other lean age groups thereafter. In the obese phenotype, the peak responses at 5 minutes were lower than those of lean rats at 5 minutes in 4- and 14-month-old rats and were significantly impaired in 24-month-old rats at all times measured. Norepinephrine resulted in a >1.5-fold increase in oxygen consumption in the lean phenotype at all ages studied, while in obese rats norepinephrine resulted in a~1.4-fold increase in oxygen consumption at 4 months of age with non-significant ~1.1 to 1.2-fold increases at the two older ages. In both phenotypes, the resting and the norepinephrine-stimulated oxygen consumption responses tended to decrease with increasing age. The results of this study demonstrate that the body weights of the obese phenotype are significantly greater than their lean littermates throughout the age spectrum studied, and that both resting metabolic rates, 4°C cold, and norepinephrine-stimulated thermogenesis are decreased in the obese compared to the lean phenotype and become further decreased with advancing age

Publisher

MedCrave Group, LLC

Reference51 articles.

1. Jacks DG, Kerna NA. A Comprehensive Analysis of Obesity Part 1. Overview of Obesity. J Obese Nutr Disord.

2. Haffner SM. Sex hormones, obesity, fat distribution, type 2 diabetes, and insulin resistance: epidemiological and clinical correlation. Int J Obese. 2000;24:S56-S58.

3. Thyroid and Obesity: Not a One-Way Interaction;Rotondi;The Journal of Clinical Endocrinology & Metabolism,2011

4. Rahman M. PhD Thesis: A Systems-Based Review of Adipose Tissue as an Organ: A model of autonomic, immunological, and endocrine influences. USAT Montserrat, BWI; 2018. 258 p.

5. Ravussin EM, Bogardus C, Schwartz RS, et al. Glucose induced thermogenesis and insulin resistance in man. Int J Obesity. 1985;9:103-109.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3