Machine Learning for Stimulated Reservoir Volume (SRV) Prediction Using 4-D Micro-seismic Data

Author:

Aminzadeh FredORCID,Katz Simon

Abstract

New methodology of stable, high accuracy estimation and optimization of stimulated reservoir volume (SRV) forecast is presented in this paper. It includes time-related data segmentation, new multilevel feature engineering, analysis of associations and importance of engineered variables. Among first-level feature engineered variables are three quantile-type variables qRangeDepth, qRangeNorth, and qRangeEast. hese three quantile-type variables are used for SRV estimation. In addition to quantile-type variables, two first level variables -trange and event minute are constructed as the first -level variables. These two variables give compact characterization of distribution of microseismic events in time and are used as predictor variables in ML SRV forecast. Second and third level engineered variables are built via transformation of variables of the first level. Although in this paper we focus on the SRV forecast, the same ideas are applicable to the characterization and forecasting of the plume volume in carbon storage and monitoring applications. A linear regression method and two ML methods - random forest, and regression tree are used for the SRV forecast. It is demonstrated that in the case of selection of appropriate set of first and second level predictor variables even simplistic linear regression may produce accurate SRV forecasts. Still, machine learning methods produce more accurate forecasts characterized by high values of accuracy parameters r.squared and correlation between SRV and its forecast values. Our results can have a significant impact on the proper design of a hydraulic fracturing operation. It can also be used for monitoring CO2 plume in carbon sequestration sites.

Publisher

MedCrave Group Kft.

Reference26 articles.

1. Xin X, David L. Feature engineering for machine learning and data analytics. Feature engineering for machine learning and data analytics. 335-358. Research Collection School of Information Systems. 2018

2. Andre Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research. 2003:1157-1182.

3. Enrico C, David WE, Joshua PJ, et al. Detection and analysis of microseismic events using a Matched Filtering Algorithm (MFA). Geophysical Journal International. 2016;206(1):644-658.

4. Leo E, Michael T, Jessica G. Challenges for microseismic monitoring. SEG Technical Program Expanded Abstracts. 2011.

5. Mario P. GillespieSSA: Implementing the Gillespie Stochastic Simulation Algorithm in R. Journal of Statistical Software. 2008;25(12).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3